BTOE 001: COMPUTATIONAL BIOLOGY

Course Objective:

- To understand the basics of computational science and apply it to solve biological problems.
- To learn about developing algorithms for solving complex biological problems as theoretical level.

L-T-P-J: 3-

Credits: 03

0-0-0

Module **Course Content** Teaching No. Hours/ Percentage Problem solving Technique: Algorithm, Flowchart, Compiling, Testing and Debugging, Documentation – Data structures – Array, Stack, Queue, Linked, List concepts. BioPerl 10//25% language, programming using BioPerl I Complexity of algorithms –NP complete problem- polynomial-Reducibility-sorting problem and Fibonacci Problem; Algorithm types: Linear, Exhaustive search, Branch and 10//25% Bound, divide and conquer, Expectation and Maximation (EM) with forward and backward algorithms, discriminative learning, Knuth-Morris- Pratt and Boyer-Moore Π algorithm for exact match and maximum likelihood algorithm Dynamic programming methods of sequence analysis: Principles and its uses. Hidden Markov models in sequence analysis. Introduction of Markov Chain and Hidden Markov 10/25% Ш models. Forwardbackward algorithm, Viterbi and Baum-Welch algorithms, Heuristics second generation alignment tool (Blast, FASTA, ClustalW), Monte Carlo method, Molecular dynamics Molecular computational biology: Gene prediction, sequencing genomes, similarity IV search, restriction mapping, DNA binding motif finding by sequence alignment, Gibbs 10/25% sampling approaches Laboratory Work: BioPerl programming, Multiple sequence

Text Books/ Reference Books:

- Pevzner, P. A., Computational Molecular Biology, PHI Learning Pvt. Ltd, ISBN-978-81-203-2550-0.
- Ghosh, Z. and Mallick, B., Bioinformatics Principles and Applications(2008) Oxford University Press ISBN 9780195692303
- Mount, D. W., Bioinformatics sequence and genome analysis

Course Outcome:

- CO1: To perform programming in BioPerl programming language
- CO2: To explain underlying algorithms for sequence analysis
- CO3: To explain various types of algorithms with their possible application in solving biological problems.
- CO4: To use HMM and other algorithms
- CO5: To explain the computational aspects of complex biotechnological analyses.

MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

	Program Outcomes											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н	Н		Н		L	Μ	Н	М	Н	L
CO2	L	L	L	L		М			М		Н	L
CO3	Н	Н			L		L	L		L		Μ
CO4	Н	Н	L	М	L				М	L	М	L
CO5	L	Н		L		L	L	L		М	L	Μ

H = Highly Related; M = Medium; L = Low